首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3086篇
  免费   1027篇
  国内免费   832篇
化学   3451篇
晶体学   185篇
力学   10篇
综合类   16篇
数学   4篇
物理学   1279篇
  2024年   18篇
  2023年   69篇
  2022年   160篇
  2021年   195篇
  2020年   238篇
  2019年   210篇
  2018年   171篇
  2017年   190篇
  2016年   256篇
  2015年   229篇
  2014年   283篇
  2013年   437篇
  2012年   291篇
  2011年   235篇
  2010年   183篇
  2009年   202篇
  2008年   180篇
  2007年   199篇
  2006年   191篇
  2005年   146篇
  2004年   140篇
  2003年   135篇
  2002年   76篇
  2001年   90篇
  2000年   77篇
  1999年   43篇
  1998年   34篇
  1997年   53篇
  1996年   38篇
  1995年   31篇
  1994年   31篇
  1993年   26篇
  1992年   23篇
  1991年   11篇
  1990年   13篇
  1989年   6篇
  1988年   9篇
  1987年   3篇
  1986年   3篇
  1985年   5篇
  1984年   3篇
  1983年   3篇
  1981年   4篇
  1980年   1篇
  1978年   1篇
  1973年   1篇
  1969年   1篇
  1959年   1篇
排序方式: 共有4945条查询结果,搜索用时 46 毫秒
61.
Cu doped MoSi2N4 monolayer (Cu-MoSi2N4) was firstly proposed to analyze adsorption performances of common gas molecules including O2, N2, CO, NO, NO2, CO2, SO2, H2O, NH3 and CH4 via density functional theory (DFT) combining with non-equilibrium Green's function (NEGF). The electronic transport calculations indicate that Cu-MoSi2N4 monolayer has high sensitivity for CO, NO, NO2 and NH3 molecules. However, only NH3 molecule adsorbs on the Cu-MoSi2N4 monolayer with moderate strength (−0.55 eV) and desorbs at room temperature (2.36×10−3 s). Thus, Cu-MoSi2N4 monolayer is demonstrated as a potential NH3 sensor.  相似文献   
62.
The large structural tolerance of I–III–VI group quantum dots (QDs) to off-stoichiometry allows their photoluminescence properties to be adjusted via doping, thereby enabling application in different fields. However, the photophysical processes underlying their photoluminescence mechanism remain significantly unknown. In particular, the transition channels of CuInSe2 QDs, which are altered by intrinsic and extrinsic intragap states, remain poorly reported. Herein, we investigated the photophysical processes associated with intragap states via electrochemical and optical techniques by using copper deficient Cu−In−Se QDs as well as Zn doped Cu−In−Se QDs. When the Cu/In molar ratios of Cu−In−Se QDs increased from 0.3 : 1 to 0.9 : 1, the photoluminescence spectra displayed a red-shift from 700 nm to 1050 nm. Although there was a blue-shift after the introduction of Zn2+ dopants in Cu−In−Se QDs, a significant red-shift occurred (from 660 nm to 760 nm) when the Zn/Cu molar ratios decreased from 0.7 : 0.3 to 0.3 : 0.7. The Gaussian deconvolution results of the photoluminescence spectra and the band gap derived from absorption spectra by fitting supported the fact that the optical transition channels are dependent on the Cu/In and Zn/Cu molar ratios. After the introduction of the Zn2+ ions, the alloyed-resultant blue-shift of the emission spectra was observed, primarily due to the enlarged band gap; however, the radiative recombination of prominent intrinsic intragap states is still observed; and only a small proportion of the band-edge exciton undergoes recombination for the sample with low Zn content. Cyclic voltammetry measurements revealed well-defined extrinsic ZnCu intragap states (Zn substitution on Cu sites) and intrinsic Cux (x= 1+/2+) states in the band gap. The results presented here provide a better understanding of the varying effects of dopant on photoluminescence in terms of I–III–VI group QDs.  相似文献   
63.
The performance of heteronuclear clusters [AlXO3]+ (X=Al, AlO4, AlMg2O2, AlZnO, AlAu2, Mg, Y, VO, NbO, TaO) in activating methane has been explored by a combination of high–level quantum calculations with reported and supplementary gas-phase experiments. With different dopants in [AlXO3]+, the mechanism, reactivity and selectivity towards methane activation varies accordingly. The classic HAT competes with PCET, depending on the composition of intramolecular interactions. Although the existence of terminal oxygen radical is beneficial for classic HAT, the Alt−C interaction in the [AlXO3]+ clusters as enhanced by the strongly electronegative doping groups (X=Al, AlZnO, Mg, Zn, VO, NbO, TaO) favors the PCET process, facilitating C−H bond breaking. In addition, with different dopants, the destiny of the split methyl group varies accordingly. While strong interaction between Alt and CH3 results in the formation of the Alt−C bond, dopants with variable valance may promote the formation of deep-oxidation products like formaldehyde. It has been discussed in detail how to regulate the activity and selectivity of the active center of the catalyst via rational doping.  相似文献   
64.
采用紫外荧光光谱法测定焦炉气制取液化天然气的原料气中痕量总硫,考察了样品引入速率、进样量、气体流量、燃烧温度、取样方式和进样方式等条件对分析结果的影响。总硫检出限为15μL·m-3,测定结果与气相色谱法和微库仑法的结果相吻合,测定值的相对标准偏差(n=7)小于10%。  相似文献   
65.
Homodisperse doped polyoxotitanate nanoclusters with formulae Ti11(MX)O14(OiPr)17 (M=Mn, Fe or Co; X=Cl, Br or I, OiPr=isopropoxide) display strongly dopant‐dependent properties. Spectroscopic solution and reflectance measurements backed up by density of states and time‐dependent DFT calculations based on the determined structures, show the prominent effect of FeX substitution by decreasing the HOMO–LUMO gap of the particles. The effect is attributed to the presence of an occupied Fe β orbital halfway up the bandgap, leading to long‐wavelength absorption with electron transfer to the titanium atoms of the cluster. Whereas the light absorption varies significantly with variation of the transition metal dopant, its dependency on the nature of the halogen atom or the change in dipole moment across the series is minor.  相似文献   
66.
67.
There is significant interest in high‐performance materials that can directly and efficiently capture water vapor, particularly from air. Herein, we report a class of novel porous carbon cuboids with unusual ultra‐hydrophilic properties, over which the synergistic effects between surface heterogeneity and micropore architecture is maximized, leading to the best atmospheric water‐capture performance among porous carbons to date, with a water capacity of up to 9.82 mmol g?1 at P/P0=0.2 and 25 °C (20 % relative humidity or 6000 ppm). Benefiting from properties, such as defined morphology, narrow pore size distribution, and high heterogeneity, this series of functional carbons may serve as model materials for fundamental research on carbon chemistry and the advance of new types of materials for water‐vapor capture as well as other applications requiring combined highly hydrophilic surface chemistry, developed hierarchical porosity, and excellent stability.  相似文献   
68.
AdipoR agonists are small, orally active molecules capable of mimicking the protein adiponectin, which represents an adipokine with antidiabetic and antiatherogenic effects. Two adiponectin receptors were reported in the literature referred to as adipoR1 and adipoR2. Activation of these receptors stimulates mitochondrial biogenesis and results in an improved oxidative metabolism (via adipoR1) and increased insulin sensitivity (via adipoR2). Hence, adipoR agonists are potentially performance enhancing substances and targets of proactive and preventive anti‐doping measures. In this study, two adipoR agonists termed AdipoRon and 112254 as well as two isotopically labeled internal standards (ISTDs) were synthesized in three‐step reactions. The products were fully characterized by nuclear magnetic resonance spectroscopy (NMR), mass spectrometry (MS) and density functional theory (DFT) computation. Collision‐induced dissociation pathways following electrospray ionization were suggested based on the determined elemental compositions of product ions, comparison to product ions derived from labeled analogs (ISTDs), H/D‐exchange experiments and the results of DFT calculations. The most abundant product ions were found at m/z 174, tentatively assigned to protonated 1‐benzyl‐1,2,3,4‐tetrahydropyridine for AdipoRon, and m/z 207, suggested as protonated 1‐(4‐methoxybenzyl)piperazine, for 112254. Notably, the loss of the heterocyclic ring (i.e. piperazine and piperidine, respectively) in a supposedly intramolecular elimination reaction was observed in both cases. A qualitative determination of both AdipoR agonists in human plasma was established and fully validated for doping control purposes. Validation items such as recovery (86–89%), specificity, linearity, lower limit of detection (1 ng/ml), intraday (3–18%) and interday (5–16%) precision as well as ion suppression or enhancement were determined. Based on these findings adipoR agonists can be implemented in sports drug testing procedures. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
69.
The chemical nature of the edge periphery essentially determines the physical properties of graphene. As a molecular‐level model system, large polycyclic aromatic hydrocarbons, that is, so‐called nanographenes, can be chemically modified through either edge functionalization or doping with heteroatoms. Although the synthetic methods for edge substitution are well‐developed, incorporation with heteroatoms by the bay annulation of large PAHs remains an enormous challenge. In this study, we present a feasible peripheral sulfur annulation of hexa‐peri‐hexabenzocoronene (HBC) by thiolation of perchlorinated HBC. The tri‐sulfur‐annulated HBC and di‐sulfur‐annulated HBC decorated with phenylthio groups were obtained and characterized by X‐ray diffraction, revealing their distinct sulfur‐annulated peripheral structure. Associated with theoretical calculations, we propose that the regioselective sulfur annulation results from the minimization of strain in the aromatic backbone. We further demonstrate the structure‐correlated property modulation by sulfur annulation, manifested by a decrease in band gap and tunable redox activity.  相似文献   
70.
Chemical doping has been demonstrated to be an effective way to realize new functions of graphene as metal‐free catalyst in energy‐related electrochemical reactions. Although efficient catalysis for the oxygen reduction reaction (ORR) has been achieved with doped graphene, its performance in the hydrogen evolution reaction (HER) is rather poor. In this study we report that nitrogen and sulfur co‐doping leads to high catalytic activity of nanoporous graphene in HER at low operating potential, comparable to the best Pt‐free HER catalyst, 2D MoS2. The interplay between the chemical dopants and geometric lattice defects of the nanoporous graphene plays the fundamental role in the superior HER catalysis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号